Agentic Retrievers: State of the Method
Charles F. Vardeman II
Center for Research Computing, University of Notre Dame
2025-01-24
Knowledge Augmented Generation (KAG)
![]()
Liang, L., Sun, M., Gui, Z., Zhu, Z., Jiang, Z., Zhong, L., Qu, Y., Zhao, P., Bo, Z., Yang, J., Xiong, H., Yuan, L., Xu, J., Wang, Z., Zhang, Z., Zhang, W., Chen, H., Chen, W., & Zhou, J. (2024). KAG: Boosting LLMs in professional domains via Knowledge Augmented Generation. In arXiv [cs.CL]. arXiv. https://arxiv.org/abs/2409.13731
Using Large Reasoning Models in Agentic Systems
![]()
Xiaoxi, L., Guanting, D., Jiajie, J., Yuyao, Z., Yujia, Z., Yutao, Z., Peitian, Z., & Zhicheng, D. (2025). Search-o1: Agentic search-enhanced large reasoning models. In arXiv cs.AI. arXiv. http://arxiv.org/abs/2501.05366
Open Weight Reasoning Models
![]()
DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., … Zhang, Z. (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. In arXiv [cs.CL]. arXiv. http://arxiv.org/abs/2501.12948